118 English-speaking jobs in Toulouse

  • CNES
  • Toulouse
  • February 5
A PhD student will develop experimental protocols to measure the electrical properties of lunar dust simulants in a simulated lunar environment. The research will focus on the impact of dust grain electrical properties on charge and adhesion under varying temperatures and irradiation.
  • CNES
  • Toulouse
  • February 5
This PhD investigates the impact of urban 3D structures on land surface temperature (LST) retrieved from future thermal infrared satellite missions. The research aims to develop a semi-physical directional model to correct for these effects and normalize data acquired under different viewing and illumination conditions.
  • Pierre Fabre Group
  • Toulouse
  • February 3
LogoRegulatory CMC Development Expert needed for permanent position in Toulouse or Boulogne. Develop CMC regulatory strategy for assigned projects from early clinical trials to marketing applications. Collaborate with Pharmaceutical Development and Regulatory Development Teams.
  • CNES
  • Toulouse
  • February 3
This PhD thesis focuses on developing advanced image processing methods for space coronagraphs, specifically addressing systematics limiting JWST and Roman observations. The student will explore analytical approaches using JWST wavefront measurements and existing coronagraphic images, and develop hybrid methods combining optical modeling with telemetry and archive data. The goal is to improve exoplanet detection limits by removing starlight contamination and instrumental artifacts.
  • CNES
  • Toulouse
  • February 3
This PhD research focuses on developing a new type of powder damper for mitigating micro-vibrations in satellites. The project will involve developing a dynamic model, characterizing the damper through vibration tests, and optimizing its design for maximum energy dissipation.
  • CNES
  • Toulouse
  • February 3
This research position focuses on bridging the gap between two Earth observation models: TAMRF and RELEO. The work will extend the TAMRF architecture to a fully attention-based system using Perceiver-IO, supporting additional sensors and incorporating exogenous variables. The researcher will also contribute to RELEO's training strategy and architecture validation.
  • CNES
  • Toulouse
  • February 3
This PhD research aims to develop a method for characterizing aerosol plumes from satellite data by jointly inverting plume and surface reflectance properties. The project will explore the use of variational autoencoders (VAEs) to provide prior information on surface reflectance, overcoming limitations of existing methods that rely on simplifying assumptions and plume-free images.
  • CNES
  • Toulouse
  • February 2
This research position focuses on improving the accuracy and capabilities of DTM_nrt, an AI-based thermosphere density forecast model. The successful candidate will investigate model limitations, explore data assimilation techniques, and develop enhancements to the model's performance.
  • CNES
  • Toulouse
  • February 2
This PhD research aims to develop a method for predicting the fatigue life of metal parts produced by L-PBF additive manufacturing, considering the influence of defects. The research will involve developing a two-scale approach linking a local model detailing defects to a large-scale model of the assembled structure.
  • CNES
  • Toulouse
  • February 2
This doctoral project focuses on designing robust attitude control laws for balloon-borne pointing systems. The work will involve developing control techniques that address system uncertainties and actuator limitations, including online adaptation strategies and control allocation schemes. Validation will include robustness analysis and experimental testing on a CNES test-bench.
  • CNES
  • Toulouse
  • February 2
This PhD research aims to develop a numerical model predicting the transition from multipactor to RF discharge inception in high-frequency and radio-frequency payloads. The work will investigate electron avalanche processes, gas ionization dynamics, and the influence of geometry and material properties.
  • CNES
  • Toulouse
  • February 2
CNES is developing a sustainable water recycling system for space missions using photocatalytic degradation and in situ reactive oxygen nitrogen species (RONS) generation. The system integrates iron oxide nanoparticles and plasma-generated hydrogen peroxide to degrade organic and inorganic pollutants in wastewater.
  • CNES
  • Toulouse
  • February 2
Develop a machine learning model to predict the in-flight response of a multi-head particle detector based on ground calibration data. The model will account for instrumental effects and background noise, enabling systematic calibration and intercalibration between detectors.
  • CNES
  • Toulouse
  • February 2
This research explores the potential of silicon-based front-end circuits operating at 183 GHz and 325 GHz for miniaturized space radiometers. The study aims to address challenges such as lower electron mobility and substrate losses in silicon technologies compared to III-V semiconductors.
  • CNES
  • Toulouse
  • February 2
This PhD research will investigate the microphysics of triboelectric charging of dust grains on Mars. The study will combine experimental, theoretical, and numerical approaches to understand how charge is exchanged during grain-grain collisions and how ambient conditions influence these exchanges. Results will be compared with in situ data from the SuperCam instrument on the Perseverance rover.
  • CNES
  • Toulouse
  • February 2
This PhD study investigates the impact of high-energy radiation on spacecraft components and characterizes electrostatic discharges on critical elements. The research involves experimental, instrumental, and numerical methods to identify and measure discharges under simulated space conditions.
  • CNES
  • Toulouse
  • February 2
This project aims to design a next-generation attitude simulator testbed capable of assessing attitude control algorithms under realistic conditions. The new design will eliminate disturbances not found in orbit and handle active dynamic imbalances at the payload level. The project will investigate the use of miniaturised Control Moment Gyroscopes (CMGs) for agile balancing algorithms, decoupling an agile balancing system from the payload's ADCS, and optimizing nonlinear multibody simulations for prototyping and validating control algorithms.
  • CNES
  • Toulouse
  • February 2
This thesis develops AI tools to optimize plant cultivation in closed-loop life support systems for space missions. It focuses on using machine learning and computer vision to estimate plant and environmental states, and reinforcement learning to compute autonomous cultivation strategies.
  • CNES
  • Toulouse
  • February 2
This thesis focuses on developing a reduced-order model for the Salammbô 3D electrons code, used to simulate Earth's radiation belts. The research will explore dimensionality reduction, dynamic modeling in latent space, and the impact of dimensionality reduction on model accuracy.
  • CNES
  • Toulouse
  • February 2
This PhD research focuses on developing and validating numerical models to study the effects of water injection on the acoustic and thermal environment during rocket launch. The work will involve multi-phase flow modeling, acoustic and thermal simulations, and comparisons with experimental data from the MARTEL test bench.
Email me future jobs like these: